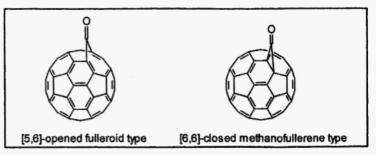
CYCLOADDITION REACTION OF C60 WITH 2-DIAZO-1,3-DITHIANE AND OXIDATION OF THE CYCLOADDUCT TO SULFOXIDE DERIVATIVES

Hiroshi Ishida,^a Hirotaka Asaji,^a Kenji Itoh,^a and Masatomi Ohno^b

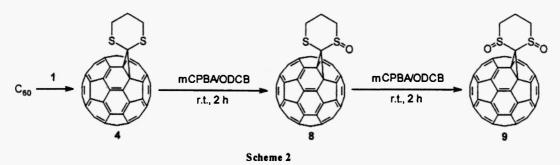

 Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
Department of Materials Science and Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan

Abstract: Cycloaddition reaction of C_{60} , directed toward synthesis of homo[60]fullerenone, was carried out with 2-diazo-1,3-dithiane generated by Bamford-Stevens and diazo-tranfer reactions. As a result, dithiane ring connection occurred as a methanofullerene type rather than a fulleroid type. Such reactivity distinguished between [2+1] and [3+2] cycloaddition routes of this diazo compounds. Oxidation of the addend wiith mCPBA proceeded smoothly to give the corresponding sulfoxide derivatives.

Derivatization of fullerenes developed quite rapidly after discovery of a method for bulk production of fullerenes by Krätschmer and Huffman (1), and a variety of organic derivatives of C_{60} and to a minor extent of C_{70} have been synthesized (2); many of them exhibit promising potential as new materials and pharmaceuticals (3). Among them, fullerene derivatives functionalized with heterocycles are of particular interest because; i) even a simple combination of fullerenes with structurally diverse heterocycles provides a multitude of derivatives, ii) heterocycles are themselves intriguing and important functional groups, iii) functional conversions can be carried out with relative ease by heterocyclic modification and heterocyclic ring-opening, and iv) bond-formation between fullerene-carbons and various heteroatoms provide a new aspect of functionalization.

Fullerene-heterocycle combinations can range widely over a variety of heterocyclic systems, and synthesis of some heterocycle-containing fullerene derivatives have already been documented by us and other groups (4). We have now focused on a dithiane ring, which is an interesting class of heterocycle in synthesis but not yet exploited in fullerene chemistry; since a dithiane ring is able to serve as an efficient protecting group for a carbonyl function (5), this heterocycle may be useful as a precursor for synthesis of "homo[60]fullerenone". For this hypothetical and attractive fullerene derivative, two possible structures are considered; one is a [6,6]-closed methanofullerene type and the other is a [5,6]-opened fulleroid type (6). The former is supposed to be unstable because facile cheletropic elimination brings about spontaneous decomposition to pristine C_{60} and carbon monoxide, and in this sense the latter is expected to be a

practical candidate. Such a [5,6]-opened fulleroid type of adduct is known to occur favorably from [3+2] cycloaddition reaction with diazo compounds under thermal conditions (6,7). These are enough to prompt us to examine the cycloaddition reaction of C₈₀ with 2-diazo-1,3-dithiane as an approach to incorporate a carbonyl function on the C₈₀ surface.


Required 2-diazo-1,3-dithiane 2 is accessible from the Bamford-Stevens (8) and diazo-transfer reactions (9). First, the cycloaddition reaction via the Bamford-Stevens reaction was attempted. p-Tosylhydrozone 1 was prepared from p-tosylhydrazine based on the reported procedure (8), and 2 was generated in situ by base treatment (nBuLi/THF, 0 °C, 30min) of 1 (2 equiv.) followed by thermolysis at 135 °C for 35 min in o-dichlorobenzene (ODCB) under an argon atmosphere, during which Ceo was allowed to react with 2 (or otherwise with the derived carbene 3)(Scheme 1). The reaction proceeded smoothly as judged by the solution color changing from purple to dark brown and TLC analysis showing a new product ($R_f = 0.4$, hexane/toluene 3/1). After evaporation of the solvent under reduced pressure, the residue was subjected to chromatography. Unfortunately, the product could not be separated completely from unreacted C₆₀ by silica gel chromatography (10) and even by preparative HPLC, but the structure could be analyzed as a crude form without interference of pristine Ceo. The FAB-MS supported a 1:1 cycloadduct by a parent peak at m/z 838 together with a base peak at m/z 720. The UV/Vis spectrum had Amer 430 nm, which is characteristic of [6,6]-closed cycloadduct of Ceo (11), suggesting that the cycloadduct was methanofullerene 4. In accordance with this, NMR spectra were compatible with C_{2v} symmetricity of 4. While requisite signals at δ 2.40 (m, 2 H) and 3.30 (m, 4 H) due to a 1,3-dithiane ring were observed in ¹H-NMR (500 MHz), ¹³C-NMR (125 MHz) showed 16 lines at δ 140.15 - 146.47 due to sp² spherical carbons (12) and 1 line at δ 66.18 due to sp³ fusion carbons together with 3 lines at δ 26.46, 32.92 and 47.91 due to 1,3-dithiane ring carbons. These spectral inspections indicated that the method using the Bamford-Stevens reaction did not give the targeted fulleroid type of product (*i.e.*, $\underline{6} \rightarrow \underline{7}$).

Then, an alternative reaction *via* the diazo-transfer route was attempted to avoid drastic thermal conditions. Recently, Benati et al. demonstrated that $\underline{2}$ *in situ* generated by diazo-transfer to 2-trimethylsilyldithiane $\underline{5}$ reacted with dimethyl fumarate to give the corresponding cyclopropane derivative either *via* [3+2]cycloaddition reaction of $\underline{2}$ followed by decomposition of the resulting pyrazoline intermediate or *via* direct [2+1]cycloaddition of the carbene intermediate derived from decomposition of $\underline{2}$; it remains unclear whether is actually operative (9). Since characteristic reactivity of [60]fullerene possibly distinguish between these two (*vide infra*) and milder conditions is fit for our purpose, this method was applied to C₆₀. Thus, a solution of 2 in THF-HMPA prepared from $\underline{5}$ (2.5 equiv.) and tosyl azide according to the reported procedure (9) was treated with C₆₀ in *o*-dichlorobenzene at 0 °C for 2 h and then at room temperature for 2 h. The reaction also proceeded smoothly even at lower temperature than employed in the reaction of $\underline{1}$. The same workup and chromatography as above gave a nitrogen-extruded cycloadduct (Scheme 1), but yet spectral data of the cycloadduct obtained here was consistent with those of the above product *via* the Bamford-Stevens reaction.

It is concluded from above results that the [6,6]-closed product (methanofullerene) is the sole product from the cycloaddition reaction of C_{60} with <u>2</u>. In fullerene chemistry, cycloaddition with diazoalkanes produces a pyrazoline derivative in only the case of the parent diazomethane (7a), and those with all others produce [5,6]-opened cycloadducts (fulleroids) directly (7b-e) as a result of concomitant extrusion of nitrogen through the concerted manner (13). Methanofullerenes are formed after the rearrangement under various (thermal, photochemical, electrochemical, and acid-catalyzed) conditions (14). It is apparent that the carbene route results in the straightforward formation of methanofullerenes. In comparison with these facts, it is likely in the case of S,S-disubstituted diazoalkane <u>2</u> that the reactive carbene intermediate <u>3</u> participates preferentially and is responsible for exclusive formation of methanofullerene <u>4</u>. Thus, it is of some value for [60]fullerene to play a role of guideline to distinguish the course of the reaction in the cycloaddition of <u>2</u>(15).

Although cycloaddition of $\underline{2}$ was disappointed of our purpose, fullerene-dithiane combination was performed and the cycloadduct seems to be useful for further conversion. For example, oxidation reaction with *m*-chloroperbenzoic acid (mCPBA, 1 equiv.) at room temperature for 2 h using crude $\underline{4}$ as obtained from the above cycloaddition afforded mono-sulfoxide $\underline{8}$ in 38% overall yield (73% based on consumed C₆₀), which allowed the complete separation of the product $\underline{8}$ from C₆₀ (silica gel column eluted with C₆H₅CH₃/Et₂O 3/1) and unambiguous assignment by spectroscopic methods (16). Moreover, $\underline{8}$ was oxidized repeatedly with the same reagent to bis-sulfoxide $\underline{9}$ (17) in 74% yield (Scheme 2).

In summary, 2-diazo-1,3-dithiane 2 generated by Bamford-Stevens and diazo-transfer reactions cycloadded to C_{60} to give a methanofullerene type of product exclusively. This product has thioether functionality but is not susceptible to self-sensitized photooxygenation with the same tendency as found in tetrahydrothiophene and thiochroman-fused C_{60} derivatives (4b, 18), and such stability is convenient for handling without care. On the other hand, intentional oxidation with mCPBA gave sulfoxide derivatives 8 and 9 efficiently. Mechanistically, the characteristic reactivity of fullerene gave testimony for 2 to undergo cycloaddition *via* the carbene route.

Acknowledgement

This research was supported by a Grant-in-Aid for Scientific Research on Priority Area (A) "Creation of Delocalized Electronic Systems" (No. 10146102) and (C) (No. 12650839) from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

(1) a) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature, 1990, 347, 354.

(2) Hirsch, A. Synthesis 1995, 895.

- (3) a) Martin, N.; Sanchez, L.; Illescas, B.; Perez, I. Chem. Rev. 1998, 98, 2527. b) Da Ros, T.; Prato, M. Chem. Commun. 1999, 663.
- (4) For a review, see: Eguchi, S.; Ohno, M.; Kojima, S.; Koide, N.; Yashiro, A.; Shirakawa, Y.; Ishida, H. *Fullerene Sci. Tech.* **1996**, *4(3)*, 303. For our recent work, see: a) Ohno, M.; Sato, H.; Egushi, S. *Synlett* **1999**, 207. b) Ishida, H.; Ohno, M. *Tetrahedron Lett.* **1999**, *40*, 1543. c)Tsunenishi, Y.; Ishida, H.; Itoh, K.; Ohno, M. *Synlett* **2000**, 1318. d) Ishida, H.; Ohno, M. *Tetrahedron.* **2001**, in press.
- (5) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231.
- (6) Diederich, F.; Isaacs, L.; Phip, D. Chem. Soc. Rev. 1994, 23, 243.
- (7) For a method with the Barnford-Stevens reaction, see: a) Zizhong, L.; Boouhadir, K. H.; Shevin, P. B. *Tetrahedron Lett.* **1996**, *37*, 4651. For a diret method using diazoalkanes, see: b) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. J. Am.

Chem. Soc. **1992**, *114*, 7301. c) Prato, M.; Lucchini, V.; Maggini, M.; Stimpfl, E.; Scorranop, G.; Eiermann, M., Suzuki, T.; Wudl, F. *J. Am. Chem. Soc.* **1993**, *115*, 8479. d) Issacs, L.; Wehrsig, A.; Diederich, F. *Helv. Chim. Acta.* **1993**, 1231. e) Smith III, A. B.; Strongin, R. M.; Brad, L.; Furst, G. T.; Romanow, K. G.; Owens, K. G.; Goldschmidt, R. J.; King, R. C. *J. Am. Chem. Soc.* **1995**, *117*, 5492.

- (8) Obata, N. Bull. Chem. Soc. Jpn. 1977, 50, 2187.
- (9) Beneti, L.; Calestani, G.; Nanni, D.; Spagnalo, P.; Volta, M. Tetrahedron. 1997, 53, 9269.
- (10) Elution with hexane gave a crude methanofullerene $\frac{4}{2}$ (50 mg) including unseparable C₆₀ (ca. 41% estimated by HPLC), when the reaction was carried out with 56 mg of C₆₀.
- (11) Hirsch, A.; Grösser, T.; Skiebe, A.; Soi, A. Chem. Ber. 1993, 126, 1061.
- (12) These were observed at δ 140.15, 141.12, 142.39, 142.51, 143.11, 143.25, 143.33, 144.10, 144.81, 144.83, 144.91, 145.00, 145.48, 145.52, 145.77, 146.47 (a peak was observed at δ 143.21 due to contaminant C₆₀).
- (13) Haldimann, R. F.; Klarner, F.-G.; Diederich, F. J. Chem. Soc., Chem. Commun. 1997, 237.
- (14) a) Li, Z.; Shevlin, P. B. *J. Am. Chem. Soc.* 1997, *119*, 1149. b) Janssen, R. A. J.; Hummelen, J. C.; Wudl, F. *J. Am. Chem. Soc.* 1995, *117*, 554. c) Eiermann, M.; Wudl, F.; Prato, M.; Maggini, M. *J. Am. Chem. Soc.* 1994, *116*, 8364. d) Gonzalez, R.; Hummelen, J. C.; Wudl, F. *J. Org. Chem.* 1995 *60*, 2618.
- (15) Akasaka, T.; Liu, M. T. H.; Niino, Y.; Maeda, Y.; Wakehara, T.; Okamura, M.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 2000, 122, 7134.
- (16) Spectral data: FAB MS m/z 854 (M^{*}), 720 (base peak); IR (KBr) v (cm⁻¹) 1061, 527; UV (CHCl₃) λ (nm) 431; ¹H-NMR (1,1,2,2-tetrachloroethane-d₂) δ 2.94-3.00 (m, 2 H), 3.22-3.48 (m, 4 H); ¹³C-NMR (1,1,2,2-tetrachloroethane-d₂) δ 22.26, 31.30, 47.76, 58.49, 77.14, 78.13, 138.66, 139.78, 139.98, 140.15, 140.74, 141.73, 141.87, 141.88, 141.90,142.09, 142.39, 142.63, 142.67, 142.74, 142.79, 142.92, 143.55, 143.63, 143.70, 143.73, 143.75, 143.77, 143.87, 143.87, 144.37, 144.48, 144.58, 144.63, 144.98, 145.06, 145.08, 145.28, 145.39, 145.45, 145.51, 145.53, 145.57, 145.62, 145.66, 145.72, 145.91, 145.93, 145.95, 145.97, 146.00, 146.02, 146.14.
- (17) Elution: CHCl₃/EtOH 20/1. Spectral data: FAB MS m/z 870 (M⁺), 720 (base peak); IR (KBr) v (cm⁻¹) 1061,1057, 527; UV (CHCl₃) λ (nm) 431; Unfortunately, an NMR spectrum could not be obtained because of its quite low solubility in organic solvents. This compound has a pharmacological interest since the bis-sulfoxide of tetrahydrothiophene-fused fullerene is potentially attractive in association with *E. Coli* growth-inhibiting activity of bis-pyrrolidinum-fused fullerene (see ref. 4d).
- (18) Ohno, M.; Kojima, S.; Shirakawa, Y.; Eguchi, S. Tetrahedron Lett. 1995, 36, 6899.
- Received on March 28, 2001